1,964 research outputs found

    Local search for stable marriage problems

    Full text link
    The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on Computational Social Choice

    Energy refurbishment of the general physiology institute at Sapienza university campus

    Get PDF
    The energy requalification of the existing building heritage is one of the pillars European Union energy policy. A large part of the building heritage was built without taking into consideration the problem of energy consumption. With the aim of energy efficiency and energy savings in electrical uses, there are wide and diversified possibilities for improvement, including interventions on the building envelope and on the systems, with the introduction, where possible, of renewable energy sources. In this context, the redevelopment of historic buildings constitutes an important challenge, which involves both historical-artistic aspects and technological aspects relating to the improvement of energy efficiency and comfort. A critical analysis of every possibility is essential to preserve the balance between efficiency and architecture. The purpose of the study is the energy retrofitting of the Institute of General Physiology located within the "Sapienza" University campus. The proposed interventions include the renovation of the whole building envelope, investigated by thermographic surveys, and the installation of new heating and cooling systems. The results were analysed to identify the best intervention for a sustainable energy renovation of the historic building, taking into account the preservation of its architectural values and making it suitable for modern use

    Genome Editing and Muscle Stem Cells as a Therapeutic Tool for Muscular Dystrophies

    Get PDF
    PURPOSE OF REVIEW: Muscular dystrophies are a group of severe degenerative disorders characterized by muscle fiber degeneration and death. Therapies designed to restore muscle homeostasis and to replace dying fibers are being experimented, but none of those in clinical trials are suitable to permanently address individual gene mutation. The purpose of this review is to discuss genome editing tools such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which enable direct sequence alteration and could potentially be adopted to correct the genetic defect leading to muscle impairment. RECENT FINDINGS: Recent findings show that advances in gene therapy, when combined with traditional viral vector-based approaches, are bringing the field of regenerative medicine closer to precision-based medicine. SUMMARY: The use of such programmable nucleases is proving beneficial for the creation of more accurate in vitro and in vivo disease models. Several gene and cell-therapy studies have been performed on satellite cells, the primary skeletal muscle stem cells involved in muscle regeneration. However, these have mainly been based on artificial replacement or augmentation of the missing protein. Satellite cells are a particularly appealing target to address these innovative technologies for the treatment of muscular dystrophies

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Online Motion Planning for Safe Human–Robot Cooperation Using B-Splines and Hidden Markov Models

    Get PDF
    When humans and robots work together, ensuring safe cooperation must be a priority. This research aims to develop a novel real-time planning algorithm that can handle unpredictable human movements by both slowing down task execution and modifying the robot’s path based on the proximity of the human operator. To achieve this, an efficient method for updating the robot’s motion is developed using a two-fold control approach that combines B-splines and hidden Markov models. This allows the algorithm to adapt to a changing environment and avoid collisions. The proposed framework is thus validated using the Franka Emika Panda robot in a simple start–goal task. Our algorithm successfully avoids collision with the moving hand of an operator monitored by a fixed camera

    Human-robot coexistence and interaction in open industrial cells

    Get PDF
    Recent research results on human\u2013robot interaction and collaborative robotics are leaving behind the traditional paradigm of robots living in a separated space inside safety cages, allowing humans and robot to work together for completing an increasing number of complex industrial tasks. In this context, safety of the human operator is a main concern. In this paper, we present a framework for ensuring human safety in a robotic cell that allows human\u2013robot coexistence and dependable interaction. The framework is based on a layered control architecture that exploits an effective algorithm for online monitoring of relative human\u2013robot distance using depth sensors. This method allows to modify in real time the robot behavior depending on the user position, without limiting the operative robot workspace in a too conservative way. In order to guarantee redundancy and diversity at the safety level, additional certified laser scanners monitor human\u2013robot proximity in the cell and safe communication protocols and logical units are used for the smooth integration with an industrial software for safe low-level robot control. The implemented concept includes a smart human-machine interface to support in-process collaborative activities and for a contactless interaction with gesture recognition of operator commands. Coexistence and interaction are illustrated and tested in an industrial cell, in which a robot moves a tool that measures the quality of a polished metallic part while the operator performs a close evaluation of the same workpiece

    Nonuniversal route to universality: Critical phenomena in colloidal dispersions

    Get PDF
    We investigate critical phenomena in colloids by means of the renormalization-group based hierarchical reference theory of fluids (HRT). We focus on three experimentally relevant model systems: namely, the Asakura-Oosawa model of a colloidal dispersion under the influence of polymer-induced attractive depletion forces; fluids with competing short-range attractive and longer-range repulsive interactions; solutions of star-polymers whose pair potential presents both an attractive well and an ultrasoft repulsion at shorter distance. Our results show that the ability to tune the effective interactions between colloidal particles allows one to generate a variety of crossovers to the asymptotic critical behavior, which are not observed in atomic fluids.Comment: 4 pages, 3 figure
    • …
    corecore